
J .  Fluid Mech. (1987), vol. 183, pp. 439450 
Printed in Great Britain 

439 

Internal gravity waves generated by oscillations 
of a sphere 

By J. C. APPLEBY 
Department of Engineering Mathematics, University of Newcastle-upon-Tyne, 

Newcastle-upon-Tyne NE1 7RU, UK 

AND D. G. CRIGHTON 
Department of Applied Mathematics & Theoretical Physics, University of Cambridge, 

Silver Street, Cambridge CB3 9EW, UK 

(Received 11 February 1986 and in revised form 23 March 1987) 

We consider the radiation of internal gravity waves from a spherical body oscillating 
vertically in a stratified incompressible fluid. A near-field solution (under the 
Boussinesq approximation) is obtained by separation of variables in an elliptic 
problem, followed by analytic continuation to the frequencies w < N of internal 
wave radiation. Matched expansions are used to relate this solution to a far-field 
solution in which non-Boussinesq terms are retained. In  the outer near field there are 
parallel conical wavefronts between characteristic cones tangent to the body, but 
with a wavelength found to be shorter than that for oscillations of a circular cylinder. 
It is also found that there are caustic pressure singularities above and below the body 
where the characteristics intersect. Far from the source, non-Boussinesq effects cause 
a diffraction of energy out of the cones. The far-field wave-fronts are hyperboloidal, 
with horizontal axes. The case of horizontal oscillations of the sphere is also 
examined and is shown to give rise to  the same basic wave structure. 

The related problem of a pulsating sphere is then considered, and it is concluded 
that certain features of the wave pattern, including the caustic singularities near the 
source, are common to a more general class of oscillating sources. 

1. Introduction 
Internal gravity waves are an important feature of oceanic, atmospheric and 

astrophysical flows. While ray theory provides a good description of the general 
structure of the wave pattern produced by some disturbance (Lighthill 1978), it is 
difficult to write down an exact solution giving amplitude information (even for an 
inviscid case) for the motion resulting from, say, some specified motion of a rigid 
body. 

When the Boussinesq approximation is made, and variation in only two dimensions 
is assumed, the initial-value problem can be solved using Laplace transforms, which 
make the governing equation for the pressure elliptic, and complex variable methods 
can be applied to the spatial problem (Bretherton 1967). Hurley (1972) showed how 
a steady-state problem could be solved as an elliptic problem for frequency w > N 
and then analytically continued to the hyperbolic case w < N, where N is the 
Brunt-Viiisalii frequency. The governing equation is also elliptic if rotation is present 
and the source frequency is sufficiently small. Sarma & Krishna (1972) attempted the 
general incompressible non-Boussinesq problem for an oscillating spheroid with a 
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solution in terms of spheroidal wave functions, but these are unwieldy and difficult 
to interpret. Hendershott (1969) considered instead a spherical source beginning to 
pulsate; the solution was then a function of a radial-type coordinate only. The 
steady-state, Boussinesq solution was found, but, as we shall show below, 
singularities were overlooked in the solution when the rotation is small. 

While the papers cited above make important contributions to the solution of 
difficult internal wave boundary-value problems, they leave open questions worthy 
of further study. For example, although Hurley (1972) gave a general solution in 
characteristic coordinates that could, in principle, be used to describe the waves 
generated by some specific motion of a cylinder, he did not in fact obtain the solution 
for horizontal or vertical oscillations of a rigid cylinder. And with regard to non- 
Boussinesq effects that might be significant at large distances, we know of no 
treatment that reveals the essential nature of those effects (although they are 
formally included in the spheroidal wave function expansion of Sarma & Krishna 
(1972), but only then in the case of an elliptic problem with rotational effects 
dominating those of stratification). 

To make more specific and detailed predictions about the generation of internal 
waves by prescribed motions of simple bodies, the authors (Appleby & Crighton 
1986) applied a variant of Hurley’s (1972) method to the problem of steady-state 
oscillations of a cylinder, with non-Boussinesq effects included. The exact Boussinesq 
solution was found as the leading-order term in an inner expansion, and had the 
familiar ‘St. Andrew’s Cross’ structure (Mowbray & Rarity 1967). This was matched 
to two far-field expansions, valid in different angular regions, where non-Boussinesq 
terms were significant. The outer field, insignificant for terrestrial flows, but of more 
interest in astrophysical and laboratory cases, had a very different structure, with 
hyperbolic wavefronts, although the energy still remained concentrated near the 
characteristic surfaces. Non-Boussinesq effects were interpreted as causing the 
diffraction of energy towards the horizontal. 

The present paper applies a similar method to the solution of the problem of 
radiation by a sphere oscillating in an incompressible fluid. A similar complex 
coordinate transformation is used, and is given only in outline here. The treatment 
for just the leading-order terms is included ; higher-order terms may be derived by 
the method of matched asymptotic expansions, as in the first paper. We draw 
attention to certain physical features, which might be investigated experimentally, 
in which there is a qualitative difference between the fields of a cylinder and a 
sphere. 

Section 2 deals with vertical oscillations of a sphere, $2.1 describing the 
coordinate transformation and the Boussinesq, or leading-order inner, solution, and 
$2.2 the outer solutions valid at large distances from the source. For a vertically 
oscillating source, there is no azimuthal variation and the solution is described in 
terms of Legendre functions matched to spherical Bessel functions. In $2.3 these 
results are interpreted for the radiating case w < N .  An indication of the general 
structure of the solution for the case of horizontal oscillations is given in $3. 
Hendershott’s pulsating spherical source is considered in $4. In the discussion of $ 5  
these three model solutions are compared and contrasted and some general 
conclusions are drawn concerning the wave structure and the range of validity of 
these results. 
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2. Vertical oscillations of a sphere 
2.1. The problem for w > N 

An exponential density profile Po = jjoo exp ( - /3z) is assumed, giving a constant 
Brunt-VaisalS frequency N = (g/3)$. Then the pressure p is written as exp ( -$z)  q, 
and assumed to be a function only of the radial and vertical cylindrical coordinates 
r and z, and of time through the factor exp (-iiwt) which is suppressed in the 
following. The coordinates are made dimensionless with the radius of the sphere. 

Then the equations of axisymmetric (non-swirling) inviscid incompressible flow 
under gravity g can, in the linear approximation, be combined to give 

see Sarma & Krishna (1972). If the vertical velocity amplitude of the sphere is taken 
as unity, the inviscid boundary condition is 

ur+wz = z on r 2 + z 2 =  1,  (2.2) 

where (u, w )  are the velocity components corresponding to (r,  z).  

be applied: 

where 

For w > N, (2.1) is elliptic, and a stretched oblate spheroidal transformation may 

r = ac (1 + f z ) i ( i  - q z ) i ,  z = ~ 6 7 ,  (2.3) 

[Ol;sN1]:, c =  [ - .  N 2  ]: a =  ~ 

w2 - N2 

Then (2.1) and (2.2) become 

with 

and where 
q = ibo0 NaQ 

defines Q. 
Full solutions to (2.4) can be described in terms of spheroidal wave functions, but 

if /3 (which is the ratio of the sphere radius to the atmospheric density scale height) 
is small, the leading-order solution (in an expansion in powers of /?) satisfies 
Legendre’s equation in each coordinate. Near to  the source, i.e. for ( 6 , ~ )  = O( 1) as 
B + O ,  we write Q ( [ , q )  for the inner solution, which must be of the form 

0 N C,(iE)C(q) OF Q,(iE)CAq), 
since solutions Qn(q) would imply logarithmic variation in the ‘angular ’ coordinate 
and would not be periodic. At  large distances R from the source, li61 is large, and 
although the pressure perturbation need not be small, the velocity perturbation 
should certainly decay. Hence the Pn(if) are also unacceptable. 
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For the leading term, 
a& -= r ]  onE=EO, 
a t  

and hence 

and therefore, for large values of 6, the behaviour of the leading-order pressure field 
is given by 

& - A ,  -- = O ( K 2 ) ,  (2.9) ( 3 2 7  

with algebraic decay. Since (G/A, )  is purely real it follows that p and u are +r out of 
phase, implying no energy radiation. At this level of approximation, the inner 
solution satisfies equations in which the Boussinesq approximation has been 
made. 

The inner solution continues (as in Appleby & Crighton 1986) with a term of order 
p, forced by the boundary condition (2.5). Conventional treatments considering only 
the propagation of internal waves claim that all first-order effects in p are accounted 
for by the factor exp ( -$z)  extracted from p and by the factor exp ( +;/3z) extracted 
similarly from all fluctuating velocities, and that when these factors have been 
extracted the relative error in the Boussinesq approximation is O(p”). This is 
evidently inadequate to take care of all O(8)  effects if any boundary condition on a 
finite body is to be imposed. Similar considerations apply in other wave generation 
problems - for example, acoustic radiation in the nearly incompressible limit. 

We should note here that the inner solutions do not depend on an exponential 
density distribution. As long as the density profile has a scale height H large 
compared with the body scale a, the same inner solutions will apply throughout 
1x1 + H ,  and these solutions are therefore particularly important. On scales 
1x1 = O ( H ) ,  however, the detailed nature of the profile becomes important, and the 
specific results for the outer solutions therefore apply only to the exponential 
profile -though one may reasonably anticipate that the qualitative effects seen a t  
large distances for this profile will also be of general relevance. 

2.2. Outer solutions 
Unless the Boussinesq approximation (/3 = 0) has been made, the term +p”t2 in (2.4) 
necessarily becomes significant et large distances from the source. To take account 
of this, let ,u = &3E, and write Q for the outer solution; then (2.4) becomes 

The leading-order solution will be a product of a modified spherical Bessel function 
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with a Legendre function, and choosing these to give decay with distance, we 
have 

Q - P Bo (GrKnG(p) pn(7)* (2.11) 

This must be matched to 0 to determine m, n, B, in a region where 5 is large but p 
small. The 7-dependence of 0 implies that n = 1 ; then for small p, 

while for large 5, (2.9) gives 

Therefore m = 2 and 

Q N --- A0 1 
3 p*  

so that 

1 
67t 

B, = --A0c2, 

(2.12) 

At large distances from the source, this Q is of the form 

R-' exp ( - kR), 

with k = k(7) constant along any given cone with vertical axis. The pressure and 
(spherical) radial velocity fluctuations are again out of phase and, as expected since 
we still have o > N, no energy is radiated to infinity. 

From Appleby & Crighton (1986) we anticipate the need for an additional 
representation & when 7 is large, although this is redundant in the case w > N. This 
representation, and the corresponding asymptotic solution, refers to imaginary 
angles when w > N (when it is redundant), but to real angles when analytic 
continuation is made to frequencies w < N. 

Let A = $&; then (2.10) becomes 

The leading-order solution as /3+0 for (A,p) = 0(1) will be a product of spherical 
Bessel functions. From the form of 0 and the need to avoid non-periodic angular 
dependence, we choose 

(2.14) 

For A small, 7 large, this should match (2.12), so n = 1 is taken. For A small, 

and hence s = 1 and C, = -A,+ Therefore we have 

(2.15) 

PLY 183 16 
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FIGURE 1. Diametral section through the oscillating sphere. Region I11 is a section through the 
upper characteristic cone, region V a section through the lower characteristic cone. In the 
Boussinesq approximation, wave activity is confined to I11 and V. Diffraction into region I1 
causes concentrations of wave energy near the lower boundary of I11 and near the upper boundary 
of V. Focusing singularities appear at z = f d ,  r = 0. 

When analytic continuation is made to the case o < N, the expressions (2.12) and 
(2.15) are both needed to describe the (non-Boussinesq) far field, but in different 
regions, as described in $2.3. 

2.3. Analytic continuution to o < N 

r = yd(1+62);(1 -72)+, z = -idcT, (2.16) 

so that 6, 7 are now complex coordinates. Real (r,z)-space can be divided into six 
regions separated by conical characteristic surfaces, in which 6, 7 have different 
complex components (figure 1). Writing 

6 = sinhp, 7 = sin8; p = a+i7, 19 = K+iv, (2.17) 

then in region 11, for example, p is real and 8 is imaginary. In  region I, 6 is real and 
p is imaginary. Also Re (t), Im (4) 2 0 always. A fuller description of the use of these 
complex coordinates can be found in Appleby & Crghton (1986). 

Consider first the inner, or Boussinesq, solution &, given by (2.7) and (2.8). The 
points r = 0, z = + d  are on the boundaries between regions I, 111, IV and I, V, VI 
respectively. Here 7 = in, cr = y = 0, K = +in and 6 = i, so that there is a logarithmic 
singularity in the pressure at  these points. Since 6 = i a t  both points, there is no 
branch cut in real space, and the logarithmic term may be defined uniquely by taking 
a, real value on the z-axis a t  large distances from the source (A ,  must be expressed 
as a logarithm rather than as an inverse tangent for w < N ) .  For w > N these 
singularities do not arise. Such singularities have not previously been encountered in 
internal wave problems. 

For o < N, a becomes imaginary, and we write a = iy, c = -id, giving 
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Further from the source, the behaviour is given by (2.9). In region 111, a = v and 
both are large together, so 0 -:A, 2ieY-2ve-i(C+2T) 

= -gAOe-ne-si7 

I (2.18) 

which shows that there is phase variation only across the cone 111. Since cos2 T varies 
linearly from 1 to 0 across this conical region, this implies a shorter wavelength than 
that for the oscillating cylinder, where Q - exp ( - 2 i ~ )  (Appleby & Crighton 1986). 
Region V has similar behaviour. 

In  regions 11, IV and VI, K ,  T are constant, and v is asymptotically constant on any 
cone through the origin, so that 

radially, and is of constant phase implying, as anticipated, that no energy is radiated 
in these regions. 

The pattern overall is therefore similar to that for the well-known two-dimensional 
case, although with waves of shorter wavelength. Internal waves with wavefronts 
parallel to a characteristic and with a two-dimensional spreading factor propagate 
within two conical regions, and there are non-radiating disturbances elsewhere. 

R-; e-3i7 

0 N R-2 

For the outer solution 

1 
N- exp {@bee"( -sin T + i cos T ) }  sin 8, (at large distances) 

1 
N- e'-iC exp {@Beu ( -sin 7 + i cos T ) } ,  (2.19) 

if sin8 is large also, but such that B sin8 is still small (otherwise 0 must be taken). 
Then in region 11, K = 7 = 0, and on any radial cone, 

1 0 - exp{ikR}, (2.20) 

with k = k(v). This describes spherically diverging waves propagating at angles to the 
vertical greater than the characteristic angle, and with hyperboloidal wavefronts 
(a = constant). 

When p, 7 are both large, 0 must be taken, and 

1 1  
e 

N-- v-ix exp {@Pe"(i COB T -sin T ) }  exp {@Pe"(i cos K + sin K ) } ,  

with behaviour like that of 0 in region 11. 
In region I11 (and similarly in region V) parallel to the characteristics, 

(2.21) 

(2.22) 

152 

1 
R 

- - exp (ik&), 
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with k = k(7). Here the wavefronts follow no familiar pattern, but (2.22) describes 
the diffraction process as conical wavefronts give way to hyperboloidal wavefronts. 
As distance from the source increases, there is progressively less energy propagated 
within regions I11 and V, as diffraction concentrates the wave energy close to the 
characteristic cone nearer the horizontal and causes wave energy also to be 
propagated - in spherical wave form - in region 11. As the other cones are approached 
(i.e. those nearer the vertical), the radial wavelength becomes infinite. 

In regions IV and VI, 7 = in, and both 4 and Q are of the form 

with exponential decay and no energy propagation. 

3. Horizontal oscillations of a sphere 
If the sphere oscillates horizontally, the solution will vary azimuthally. There will 

be also an induced mean flow, although this will not be described by the linearized 
equations used here. The scaled pressure, as defined in $2, now obeys 

where q, is the azimuthal angle, and the boundary condition becomes 

ur+wz = T cosq, on r 2 + 2  = 1. (3.2) 

Transformed as before, these become 

(3.3) 
and 

aQ B(1-a2)f -- 
at 2a 7Q = (1 -7'); cosq, exp (-&37) on t = to. (3.4) 

The complete solution can be described by oblate spheroidal wave functions, but 
we prefer to proceed as before using asymptotics as /3+0. The leading-order inner 
solution satisfies the double associated Legendre equation given by the left-hand side 
of (5.3), with the boundary condition 

_ -  a0 - ( I  -r2$ cosq, on 6 = to. 
a t  

This gives the solution 0 = Go+ O(P),  with 

8, = AQ:(ioP:(7) COST 

(3.5) 
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where A is given by 
d 

d6 
A-Q&:(il) = 1 on 6 = 6,. (3.7) 

The structure of this solution is very similar to that for vertical oscillations away 
from the source, but for the variation with azimuthal angle cp. However, the 
logarithmic singularities at z = + d  (6 = i) are now dominated by algebraic 
singularities. The pressure varies 8s (6-i)-:, the velocity as (f-i)G, so that the 
energy flux into a vanishingly small volume around the points z = + d  is finite, and 
the energy in such a small volume is infinite, like lnS where S is the radius of the 
volume. 

For /3[ large, let p = &3c6; then (3.3) becomes 

The leading-order solution for 6, describing the outer wave field, will be a product 
of a modified spherical Bessel function and an associated Legendre function, and the 
analysis proceeds much as before. 

4. The pulsating spherical source 

of fixed (oscillating) normal velocity. In our coordinates this is 
Hendershott (1969) used a simpler boundary condition on the sphere, namely that 

The Boussinesq solution satisfies 

and is 

(4.3) 

with logarithmic singularities in the pressure. Away from the source, in the wave 
regions I11 and V, 

1 
Rr (7 - 7e-iT, (4.4) 

so that the phase variation across regions I11 and V is less rapid than before; this 
agrees with Hendershott's solution. 

For /36 large we readily find the non-Boussinesq outer solution 

with a structure asymptotically the same as that for the oscillating sphere. 0 may 
also be derived for this case. 
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In Hendershott’s analysis, where solid-body rotation with angular velocity SZ was 
included, the logarithmic singularities for the Boussinesq solution do not appear for 
Q2 > N 2 ,  but are present (and are overlooked) in the case N 2  > SZ2, a t  the same 
points, above and below the sphere, at  the intersection of the characteristic cones. To 
see this, consider Hendershott’s equation (22) for the vertical velocity, 

where Br is the usual Bromwich inversion path for Laplace transforms, O(s) is the 
Laplace transform of the radial velocity of the sphere, and in Hendershott’s (22) we 
have put the sphere radius a = 1 and the rotation parameter f = 0. With the same 
replacements, Hendershott’s (21) defines the Z* as 

so that on the axis r = 0, Z+ = Z-, and the branch points of the integrand coalesce 
to form simple poles at  s = +iZ. Now if the source velocity is exp ( - id )  for t > 0, 
then b(s)  = l / ( s + i w )  and the integrand of (4.6) has simple poles at +iC and at 
s = -iw. However, if we choose the point on r = 0 to coincide with the upper or lower 
apex of the characteristic cone for frequency w (z = f d  in figure i), then geometry 
shows that C = - w ,  and s = - iw is a double pole. At these points, therefore, w grows 
with time like t exp ( - iwt) and there is no steady state with finite amplitude at these 
points ( r  = 0, z = &a). At points ( r  = 0, z = + d + s )  there is finite steady-state 
response at  the forcing frequency, and the amplitude (of w) is O((C+w)-l) = O(s-l). 
The pressure singularity is therefore O(lnc), as predicted by (4.3), and it can be 
verified that the coefficients of the singular terms predicted by (4.3) and by (4.6) agree. 
The fact that these singularities were overlooked by Hendershott in no way 
invalidates the analysis of his paper which, in the main, is concerned with transient 
and steady-state response a t  distances large compared with the sphere radius but (as 
Hendershott makes clear) small compared with the scale height, 1 -4 (r2+z2)i  -4 pl. 
A local analysis of the singular regions (to prove that the singularities do indeed 
have only local significance) would be interesting, but is not attempted here. 

5. Discussion and conclusions 
Three related problems concerning the generation of internal gravity waves by 

oscillating bodies have been considered in this and a preceding paper (Appleby & 
Crighton 1986). In each case a solution (the inner solution) was found under the 
Boussinesq approximation, valid out to large distances except in some astrophysical 
or laboratory situations. The wave structure was found to be similar in each case, 
having parallel, unchanging wavefronts between characteristic surfaces tangent to 
the body, although with different wavelengths. The form of the three Boussinesq 
solutions and the corresponding outward (i.e. parallel to the characteristics) velocity 
components in region 111 are summarized in table 1. If we let cos 27 = s, then s varies 
linearly from 1 to 0 going from region I1 to region IV, and the phase structure can 
be written: 

e-’7 = [(l +s)f-i(l -s)i]/l/2 (pulsating sphere), 
e-2i7 = 8 -  i(l -a2)$ (oscillatinf: cylinder), 
e-3i7 = [(l  +s)f(2s-l)-i(l -s)i(2s+ 1)]1/2 (oscillating sphere). 
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P(P9 8) Wave-field Outward Wavelengths 
Source pressure structure velocity across region 

Pulsating 
sphere 

e-il 

Rt sin 27 
a 

e-8i. 
e-Pir - 1 

cylinder sin 27 Oscillating e-p sin 8 Y 

Oscillating 
sphere 

1 - &3iT 

ld &sin 27 t 

TABLE 1. Principal features of Boussinesq (inner) solutions in region I11 of figure 1 

FIGURE 2. Regions of different wave structure and asymptotic expansions. The shading is intended 
to suggest the radial wavefronts in the case of vertical oscillations. 

This illustrates the difficulty of working in more comprehensible coordinates. Note 
also that 

d(cos 27) = - 2 P' sin 27 

and hence the velocity singularities at the edges of the characteristic cones are 
integrable and are local features of the inviscid formulation. The integrated energy 
flux is finite in each case. 

In all cases, non-Boussinesq effects in the far field lead to a diffraction of energy 
from the characteristic regions to give hyperboloidal (or hyperbolic) wavefronts 
between these regions and the horizontal, although most of the energy is concentrated 
near the characteristics (see figure 2). 

For the two cases with a spherical source, singularities appear in the pressure (and 
hence in the velocity) at  points above and below the source, where the characteristic 
cones intersect. These may be termed caustic or focusing singularities. Although in a 
real fluid viscosity would make the perturbation finite here, small regions of intense 
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activity should be observed in an experiment. More intense fluctuations should arise 
for horizontal oscillations, where the singularities are algebraic, than with vertical, 
where they are logarithmic. Experiments with spheres, rather than the more 
commonly used circular cylinders, are needed to see if this qualitative prediction is 
borne out. 

These singularities correspond to a finite level of activity in the wave field 
effectively generated by the perturbation at a point. In the two-dimensional case the 
characteristics intersect on an infinite line and these singularities do not occur 
(although the velocity becomes infinite a t  the edges of the wave regions). For any 
three-dimensional body such that part of the tangential characteristic surfaces is in 
the form of a circular cone there will, on the other hand, be such a concentration of 
activity. In general, it is to be expected that small regions of intense activity will be 
observed in the neighbourhood of any oscillating three-dimensional body, although 
oscillations of large amplitude would spread this area more widely. In particular, 
ellipsoidal bodies should exhibit essentially the same singularities, as well as similar 
wave structure. These could be treated by the same analytical method. 

J. C. Appleby was supported by the Procurement Executive, Ministry of Defence, 
United Kingdom. 
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